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Abstract: In 1990, the notion of critical growth in R2 was introduced by Adimurthi and Yadava. Soon afterwards, de
Figueiredo, Miyagaki and Ruf also studied the solvability of elliptic equations in dimension two. They treated the problems in
the subcritical and the critical case. In 2019, Alves and Figueieredo proved the existence of a positive solution for a planar
Schrodinger-Poisson system, where the nonlinearity is a continuous function with exponent critical growth. Also, in 2020, Chen
and Tang investigated the planar Schrodinger-Poisson system with the critical growth nonlinearity. Under the axially symmetric
assumptions, they obtained infinitely many pairs solutions and ground states. In this work, motivated by the works mentioned
above and Z. Angew. Math. Phys., 66 (2015) 3267-3282, Z. Angew. Math. Phys., 67 (2016) 102, 18, we study the planar
Schrödinger-Newton system with a Coulomb potential where the nonlinearity f is autonomous nonlinearity which belongs to
C1 and satisfies super-linear at zero and exponential critical at infinity. Moreover, we need that f satisfies the Nehari type
monotonic condition. We obtain a least-energy sign-changing solution via the variational method. To be more precise, we define
the sign-changing Nehari manifold. And the least-energy sign-changing solution is obtained by minimizing the energy
functional on the sign-changing Nehari manifold.

Keywords: Schrödinger-Newton System, The Exponential Critical Growth, Sign-Changing Solutions,
Sign-Changing Nehari Manifold

1. Introduction and Main Results
In the present paper, we are concerned with the following

Schrödinger-Newton system with a Coulomb potential{
−∆u+ u+ 2πφu+

∫
R2

[u(y)]2

|x−y| dyu = f(u), in Rd,

∆φ = u2, in Rd.
(1)

Problems of the type (1) arise in many problems from
physics. And we refer the readers to [17], where (1) appears
in a quantum mechanical context in the case d ≤ 3. For the
case d = 3, (1) is called the Schrödinger-Poisson system and
it has been well studied, see for example [3, 5, 16, 20, 22] and
the references therein. However, much less is known about the

case d = 2.
Motivated by the papers [2, 10, 12, 15, 19], the purpose

of this paper is to study the existence of least-energy
sign-changing solutions of the planar problem (1) with an
exponential critical growth (see [2]). We mention that this
notion of criticality was introduced by Adimurthi and Yadava
[1], see also de Figueiredo, Miyagaki and Ruf [13]. We refer
the readers to [6, 7, 8, 9, 11] for related problems and for recent
advances on planar Schrödinger-Newton system. In order to
state our main result, we assume that
(f1) f ∈ C1(R,R) and f(u) = o(|u|) as u→ 0;
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(f2) There exists an α0 > 0 such that

lim
|u|→∞

f(u)

exp(αu2)
= 0 for α > α0,

lim
|u|→∞

f(u)

exp(αu2)
= +∞ for α < α0;

(f3) f(u)
|u|3 is a strictly increasing function of u ∈ R \ {0};

(f4) There is a q > 4 such that F (u) ≥ 1
q |u|

q , where
F (u) =

∫ u
0
f(t)dt.

Remark 1.1. f(u) = u|u|5 exp(π−1
m u2) satisfies the

assumptions (f1)− (f4).
Now we state our first result as follows.
Theorem 1.1. For d = 2, suppose that (f1) − (f4) are

satisfied. Then for any α ∈ (0, πm ), where m > 0 will
be defined in (20), (1) possesses a least-energy sign-changing
solution.

Remark 1.2. We point out that we can define m without
using the condition α ∈ (0, πm ). It seems that the condition
α ∈ (0, πm ) is fussy but it is used to prove the minimizing
sequence of m is bounded, and please see Lemma 3.1. Up to
now, we have not been able to remove it..

The paper is organized as follows. In Section 2, let (f1) −
(f4) be satisfied, we are going to establish the variational
setting and give some preliminaries. In Section 3, with the
additional condition α ∈ (0, πm ), we are devoted to show that
m is achieved and the minimizer is a critical point. The section
4 is the conclusion, we summarize our main results and the
main idea of the proof.

2. Variational Setting and Preliminaries

We formally formulate problem (1) in a variational way as

I(u) =
1

2
‖u‖2H1 +

1

4

∫
R2

(ln(|x|) ∗ u2)u2dx+
1

4

∫
R2

(|x|−1 ∗ u2)u2dx−
∫
R2

F (u)dx, u ∈ X, (2)

where

ln(| · |) ∗ u2(x) =

∫
R2

ln(|x− y|)u2(y)dy, | · |−1 ∗ u2(x) =

∫
R2

u2(y)

|x− y|dy, (3)

and X is defined as tha in [2].
Using (f1)− (f2), for each ε > 0 and α > α0, we have

|F (u)| ≤ ε|u|2 + C(ε)|u|p[exp(α|u|2)− 1], (4)

where p > 2. At first, according to [2, 4, 14], we give the following lemma which is used to estimate the nonlinearity.
Lemma 2.1. If α > 0 and u ∈ H1(R2), then exp(αu2) − 1 ∈ L1(R2). Moreover, if ‖∇u‖L2 ≤ 1, ‖u‖L2 ≤ M and α < 4π,

then there exists C > 0 independent of u such that∫
R2

[exp(αu2)− 1]dx ≤ C. (5)

Similar to [2, 12], in view of Lemma 2.1, it is easy to check that the functional I belongs to C1(X,R). Define constraint:

M = {u ∈ X : u± 6= 0, 〈I ′(u), u+〉 = 〈I ′(u), u−〉 = 0}. (6)

Lemma 2.2. For u ∈ E with u± 6= 0, then there exists a unique pair (su, tu) of positive numbers such that suu+ + tuu
− ∈M .

Moreover, if s, t ≥ 0 and (s, t) 6= (su, tu), we have

I(su+ + tu−) < I(suu
+ + tuu

−). (7)

Proof. For u ∈ E with u± 6= 0, similar to [18], we define

g(µ, s, t) :=s2‖u+‖2H1 + s4
∫
R2

{[(ln |x| ∗ |u+|2) + (|x|−1 ∗ |u+|2)]|u+|2}dx

+ µs2t2
∫
R2

{[(ln |x| ∗ |u−|2) + |x|−1 ∗ |u−|2)]|u+|2}dx−
∫
R3

f(su+)su+dx,

(8)

and

h(µ, s, t) :=t2‖u−‖2H1 + t4
∫
R2

{[(ln |x| ∗ |u−|2) + (|x|−1 ∗ |u−|2)]|u−|2}dx

+ µs2t2
∫
R2

{[(ln |x| ∗ |u+|2) + |x|−1 ∗ |u+|2)]|u−|2}dx−
∫
R3

f(tu−)tu−dx.

(9)
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Consider the solvability of the following system{
g(µ, s, t) = 0,
h(µ, s, t) = 0.

(10)

Define Z := {ζ : 0 ≤ ζ ≤ 1 such that (10) is uniquely
solvable in (R+,R+)}, where R+ = (0,∞). Obviously,
g(0, s, t) is independent of t and h(0, s, t) is independent of
s. By (f1) and (f2), noting that

ln(r) = ln(1 + r)− ln(1 +
1

r
),

0 ≤ ln(1 +
1

r
) ≤ 1

r
, for r > 0,

(11)

and similar to the proof of [2, Lemma 3.1], we have

g(0, s, t) ≥ C1s
2 − C2s

4 − C3s
p. (12)

It follows from (f4) that

g(0, s, t) ≤ C1s
2 + C2s

4 − C3s
q. (13)

So g(0, s, t) > 0 for s > 0 small enough and g(0, s, t) < 0
for large s. Thus, there exists s0 > 0 such that g(0, s0, t) = 0
and (f3) implies the uniqueness. Similarly, for h(0, s, t). So
we can obtain that 0 ∈ Z . Next, we want to prove that Z is
open and closed in [0, 1]. Suppose that µ0 ∈ Z and (s̄, t̄) is the
unique solution of (4) with µ = µ0. It follows from (f3) that
f ′(t)t2 − 3f(t)t > 0.

Thus,

frac∂g(µ, s, t)∂s|(µ0,s̄,t̄) = s̄‖u+‖2H1 + 3s̄3

∫
R2

{[(ln |x| ∗ |u+|2) + (|x|−1 ∗ |u+|2)]|u+|2}dx

+ µ0s̄t̄
2

∫
R2

{[(ln |x| ∗ |u−|2) + |x|−1 ∗ |u−|2)]|u+|2}dx−
∫
R3

f ′(s̄u+)s̄|u+|2dx

< −2s̄‖u+‖2H1 − 2µ0s̄t̄
2

∫
R2

{[(ln |x| ∗ |u−|2) + |x|−1 ∗ |u−|2)]|u+|2}dx.

(14)

In view of (11), we have

∂g(µ, s, t)

∂s
|(µ0,s̄,t̄) < −2s̄‖u+‖2H1 − 2µ0s̄t̄

2

∫
R2

[ln(1 + |x|) ∗ |u−|2)]|u+|2dx < 0. (15)

and
∂g(µ, s, t)

∂t
|(µ0,s̄,t̄) = 2µ0s̄

2t̄

∫
R2

{[(ln |x| ∗ |u−|2) + |x|−1 ∗ |u−|2)]|u+|2}dx. (16)

And for h(µ, s, t), we have similar results. Therefore, it
yields that

det

(
∂g(µ,s,t)

∂s |(µ0,s̄,t̄)
∂g(µ,s,t)

∂t |(µ0,s̄,t̄)
∂h(µ,s,t)

∂s |(µ0,s̄,t̄)
∂h(µ,s,t)

∂t |(µ0,s̄,t̄)

)
> 0. (17)

Jointly with the implicit function theorem, we can obtain
the desired conclusion. We deduce that Iµ(su+ + tu−) →
−∞ uniformly as |(s, t)| → ∞. Up to this stage, it is
sufficient to check that a maximum point cannot be achieved
on (0 × R+) ∪ (R+ × 0). Otherwise, if (0, t̄) is a maximum
point. In view of (11), for s > 0 small enough, with [2, Lemma
2.5] in hand, it holds that

∂I(su+ + t̄u−)

∂s
≥ 2sC1+s3C2+sC3−εsC4−C(ε)spC5 > 0, (18)

which is a contradiction. 2

Since u ∈M , by(f3), f(u)u− 4F (u) ≥ 0, one has

I(u) = I(u)− 1

4
〈I ′(u), u〉 ≥ 0. (19)

We can define the minimization problem

m := inf
u∈M

I(u). (20)

3. The Proof of Theorem 1.1
Lemma 3.1. m > 0 can be achieved.
Proof. Let {un} ⊂M be a minimizing sequence. It follows

that

m+ on(1) = I(un)− 1

4
〈I ′(un), u〉 ≥ 1

4
‖un‖2H1 , (21)

which implies that {un} is bounded in H1(R2). We can
assume that u±n ⇀ u±0 in H1(R2). Since un ∈M , and∫

R2

(ln |x| ∗ u2
n + |x|−1 ∗ u2

n)|u±n |2dx ≥ 0, (22)

one has

‖u±n ‖2H1 ≤
∫
R2

f(u±n )u±n dx ≤ ε
∫
R2

|u±n |2dx+ C(ε)

∫
R2

|u±n |p[exp(α|u±n |2)− 1]dx. (23)
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If ‖u±n ‖H1 → 0, using Hölder inequality with s > 1 and s ≈ 1, it holds that∫
R2

|u±n |p[| exp(α|u±n |2)− 1])dx ≤
(∫

R2

|u±n |s
′pdx

) 1
s′
(∫

R2

[exp(αs‖u±n ‖2H1

(
u±n

‖u±n ‖H1

)2

)− 1]dx

) 1
s

. (24)

By ‖u±n ‖H1 → 0, for n large enough, it holds that

αs‖u±n ‖2H1 < 4π. (25)

By Lemma 2.1 and Sobolev embedding, we get

(1− Cε)‖u±n ‖2H1 ≤ CC(ε)‖u±n ‖
p
H1 . (26)

It is absurd. So m > 0. And we claim that there are R, η > 0 such that

lim inf
n→∞

∫
BR(yn)

|u±n |2dx ≥ η. (27)

If it is false, using Lion’s lemma, we get u±n ⇀ 0 in Lt(R2) for all t ∈ [2,∞). Noting (21) and taking into account α ∈ (0, πm ),
it yields that

αs‖u±n ‖2H1 < 4π. (28)

So we have

‖u±n ‖2H1 ≤
∫
R2

f(u±n )u±n dx ≤ ε
∫
R2

|u±n |2dx+ C(ε)C

(∫
R2

|u±n |s
′pdx

) 1
s′

→ 0, (29)

which is a contradiction. Thus, u±0 6= 0. As our problem is invariant by translations, according to [2, Corollary 4.4], up to a
translation, we have that {un} is bounded in X . Furthermore, it gives that∫

R2

f(u±n )u±n dx =

∫
R2

f(u±0 )u±0 dx+ on(1) (30)

and ∫
R2

F (u±n )dx =

∫
R2

F (u±0 )dx+ on(1). (31)

By Lemma 2.2, there exists (s, t) ∈ (0,∞) × (0,∞) such that su+
0 + tu−0 ∈ M . Moreover, by Fatou’s Lemma, combining

with (11), we get∫
R2

{[(ln |x| ∗ |u0|2) + (|x|−1 ∗ |u0|2)]|u±0 |2}dx ≤ lim inf
n→∞

∫
R2

{[(ln |x| ∗ |un|2) + (|x|−1 ∗ |un|2)]|u±n |2}dx. (32)

Thus, it follows that

‖u±0 ‖2H1 ≤
∫
R2

f(u±0 )u±0 dx and s2‖u±0 ‖2H1 ≤
∫
R2

f(su±0 )su±0 dx. (33)

Therefore, we get 0 < s ≤ 1. Similarly, 0 < t ≤ 1. By (f3), we have

uf(u)− 4F (u) (34)

is a nonnegative function, increasing in |u|. So we have

m ≤ I(su+
0 + tu−0 )− 1

4
〈I ′(su+

0 + tu−0 ), su+
0 + tu−0 〉

≤ 1

4
‖u0‖2H1 +

1

4

∫
R2

[u0f(u)− 4F (u0)]dx

≤ lim inf
n→∞

[I(un)− 1

4
〈I ′(un), un〉] = m.

(35)

The claim is done. 2

Lemma 3.2. Suppose that u ∈M and I(u) = m, then u is a sign-changing critical point of I .
Proof. Assuming the contrary that u is not a critical point of I . We can find ψ ∈ C∞0 (R2) satisfying ψ± 6≡ 0 such that
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〈I ′(u), ψ)〉 ≤ −1. Choose ε > 0 very small such that

〈I ′(su+ + tu− + σψ), ψ〉 ≤ −1

2
, ∀ (s, t, σ) ∈ Bε(1, 1, 0), (36)

where Bε(1, 1, 0) denotes the ball of radius ε centered at (1, 1, 0). And introduce a cut-off function 0 ≤ η ≤ 1 such that
η(s, t) = 1 for (s, t) ∈ B ε

2
(1, 1) and η(s, t) = 0 for (s, t) ∈ Bcε(1, 1). We perturb the original curve su+ + tu−, for s, t ≥ 0,

γ(s, t) =

{
su+ + tu−, if (s, t) ∈ Bcε(1, 1),
su+ + tu− + εη(s, t)ψ, if (s, t) ∈ Bε(1, 1).

(37)

Noting that γ(s, t) is a continuous curve in (X, ‖ · ‖), and eventually choosing a smaller ε, we obtain that γ(s, t)± 6≡ 0 for
(s, t) ∈ Bε(1, 1). We have the following claim.

Claim 3.1.
sup
s,t≥0

I(γ(s, t)) < m. (38)

If (s, t) ∈ Bcε(1, 1), according to Lemma 2.2, I(γ(s, t)) < m. If (s, t) ∈ Bε(1, 1), by using the mean value theorem, we can
find a suitable σ̄ ∈ (0, ε) such that

γ(s, t) = (su+ + tu−) + 〈I ′(su+ + tu− + σ̄η(s, t)ψ), η(s, t)ψ〉

≤ I(su+ + tu−)− 1

2
η(s, t)

< m,

(39)

Where in the first inequality we have used (36).
However, observing that Lemma 2.2, it holds that for

(s, t) ∈ (1− ε
2 , 1)× (1− ε

2 , 1),

〈I ′(su+ + tu− + εψ), u+〉 > 0 (40)

and
〈I ′(su+ + tu− + εψ), u−〉 > 0. (41)

Similarly, for (s, t) ∈ (1, 1 + ε
2 )× (1, 1 + ε

2 ), we have

〈I ′(su+ + tu− + εψ), u+〉 < 0 (42)

and
〈I ′(su+ + tu− + εψ), u−〉 < 0. (43)

Thus, there exists a unique pair (s0, t0) ∈ (1− ε
2 , 1 + ε

2 )×
(1− ε

2 , 1 + ε
2 ) such that

s0u
+ + t0u

− + εη(s0,t0)ψ ∈M, (44)

which contradicts the claim. 2

4. Conclusions

In this research, under the exponential critical growth
condition (f2) and other suitable conditions, we prove that the
planar Schrödinger-Newton system with a Coulomb potential
admits a least-energy sign-changing solution. Our basic
leitmotiv is to seek the minimizer of the energy functional
on the sign-changing Nehari manifold. So, at first, we show
the sign-changing Nehari manifold (see (6)) is well defined.
Furthermore, we show that we can define the minimization
problem. In addition, we prove that minimizer is achieved.
Finally, we show that the minimizer is a critical point. Clearly,

the minimizer is sign-changing. Also, a example satisfying our
assumptions is given in our research.
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